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3-D Simulations of Diffusivity Measurements
in Liquids with an Applied Magnetic Field
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The effect of convective contamination in self-diffusivity experiments of liq-
uid metals is predicted via a three-dimensional (3-D) model that includes
an applied magnetic field. A uniform heat flux is applied at the sidewall of
the cylindrical ampoule, and heat losses are allowed at the top and bottom
walls of the ampoule. A wide range of a uniform, steady, axial magnetic
field (from moderate to very strong) is considered in the model. Since the
thermal Péclet number, Pe, is very small for the parameters of interest, con-
vective heat transfer is neglected. A large interaction parameter, N , suggests
that the flow is inertialess. The temperature and flow problems are solved
at steady state while the time-dependent concentration problem is determined
for various mass Péclet numbers, Pem. In all cases, the output D (i.e., with
convective contamination) increases with an increase in the temperature non-
uniformity �Tθ . The radial and azimuthal velocities are much smaller than
the axial velocity in each case. A stronger magnetic field can tolerate a higher
temperature non-uniformity �Tθ , but �Tθ is still less than 0.025 K with a 5 T
magnetic field for convective contaminations to be less than 5% of the total
mass flux.

KEY WORDS: convective contamination; liquid metals; magnetic field; three-
dimensional mass diffusion.

1. INTRODUCTION

The presence of natural or buoyant convection due to temperature non-
uniformities under gravity (or maybe even in microgravity) is undesirable
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in diffusivity measurements of liquids as it may enhance the mass transfer.
Since accurate measurements are very important for further applications in
materials processing, it is essential to suppress the convection in the liq-
uids. Due to large electrical conductivities of liquid metals and semicon-
ductors, researchers have applied magnetic fields in order to suppress the
convection in the experiments. Our first self-diffusivity model that repre-
sented the experiment in the presence of a steady, uniform magnetic field
was determined for a 2-D axisymmetric case, and the results were pub-
lished for a moderate to strong magnetic field with various heating condi-
tions [1,2]. The numerical results suggested that the application of a strong
magnetic field leads to higher “allowable” temperature nonuniformities in
the liquid but in the presence of a nonuniform, steady heat transfer con-
dition in order to obtain acceptable results.

Alexander et al. [3] studied a 3-D time-dependent diffusivity model in
the presence of terrestrial gravity. They found that for horizontal tempera-
ture non-uniformities across the sample as small as 0.1 and 1 K, the con-
vective transport rates exceed the diffusive transport rates in 1 and 3 mm
diameter capillaries. This paper is a continuation of the previous work by
Alexander et al. [3] in the presence of an applied magnetic field. This is
the first 3-D numerical model, and a steady, uniform heating condition is
imposed to the model for a wide range of steady magnetic field strength.
While the radial temperature nonuniformity is the driving force of buoyant
convection in the previous, 2-D axisymmetric model, an azimuthal vari-
ation in temperature is considered in addition to the radial temperature
gradient in the 3-D model. Steady-state thermal and flow problems are
determined given that the applied heat flux is steady during the measure-
ments. Then, the time-dependent mass diffusion problem is solved with the
known thermal and flow solutions. The simulated results for a moderate to
strong applied magnetic field are presented in this paper.

2. PROBLEM FORMULATION

The model fluid is assumed to be a Boussinesq fluid, and is enclosed
within a vertical cylinder of 3 mm diameter and 30 mm in height. The
gravitational acceleration g acts downward along the vertical axis of the
cylinder, and the steady, uniform magnetic field B is applied in the oppo-
site direction. A steady, uniform heat flux is applied through the sidewall
of the cylinder during the measurements. The isopycnic radioactive tracer
is placed at one end of the cylinder at the beginning of the measurements.
A radiation shield with two bores is placed parallel to the vertical axis
where the amount of tracer is measured which is directly proportional to
the concentration at those two locations. The origin is placed at the center
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of the bottom wall of the cylinder so that the sidewall lies at r = 1, the
bottom wall is at z=0, and the top wall is at z=b which is 20 using the
radius R as the characteristic length.

In this 3-D model, the characteristic velocity to non-dimensionalize
the dimensional velocities is defined as U = ρgβ�Tθ/(σB2), where ρ is
the uniform density of the fluid, β the volumetric expansion coefficient
for Boussinesq approximation, �Tθ the maximum horizontal temperature
difference across the cylinder at any height z, and σ is the electrical
conductivity of the fluid. For a moderate to strong applied magnetic
field, the characteristic velocity U is small enough that the thermal Péclet
number Pe = ρchUR/λ becomes very small; usually < 1. Here, ch is
the specific heat and λ is the thermal conductivity of the fluid. Under
this condition, the convective heat transfer is assumed negligible and the
time-independent energy equation (∇2T = 0) is non-dimensionalized by R

for length and �Tθ for temperature. The boundary conditions for the
thermal problem are: T (1, θ, z) = 0.5(1 + cos θ) + (�Tz/�Tθ ) (z/b) at the
sidewall, where �Tz is the temperature difference between the top and
bottom wall of the cylinder; T (r, θ,0) = 0.5(1 + r cos θ) at the bottom
wall; and T (r, θ, b) = 0.5(1 + r cos θ) + (�Tz/�Tθ ) at the top wall of
the cylinder. The analytical solution for the thermal problem with given
boundary conditions is

T (r, θ, z)=0.5(1+ r cos θ)+
(

�Tz

�Tθ

)( z

b

)
. (1)

Once the temperature solution is obtained, the flow problem is deter-
mined. The characteristic ratio of the electromagnetic body force to the
inertial effect is known as the interaction parameter N =σB2R/(ρU), and
this ratio is very large for sufficiently strong magnetic field. Thus, the
inertial effect becomes negligible in the Navier–Stokes equations. In addi-
tion to the applied magnetic field, the associated currents produce a mag-
netic field known as an induced magnetic field. The characteristic ratio
of the induced applied magnetic fields is the magnetic Reynolds number
Rm =µpσUR, where µp is the magnetic permeability of the fluid. This
parameter is usually very small for characteristic velocities in diffusivity
experiments and the liquids of interest, and thus the induced magnetic
field is negligible in the model.

The dimensionless equations for the steady, inertialess flow problem
are

∇ ·ν =0, (2a)

∇p =T ẑ+ j× ẑ+Ha−2∇2ν, (2b)
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∇ · j=0, (2c)

j=−∇φ +ν × ẑ. (2d)

Equation (2a) ensures the conservation of mass in the fluid. Equation (2b)
is the Navier–Stokes equation with a buoyancy force and an electromag-
netic body force. Here, the magnetic flux is scaled by B,p is the reduced
pressure and normalized by σUB2R, j is the electric current density nor-
malized by σUB, and Ha = BR(σ/µ)1/2 is the Hartmann number repre-
senting a ratio of electromagnetic effects to viscous effects in the fluid with
viscosity µ. Equation (2c) is the continuity of electric current density, and
Eq. (2d) is Ohm’s law and is made up of the static electric field ∇φ and
the induced electric field due to the interaction between the melt motion
and the applied magnetic field. φ is the electric potential function and is
scaled by UBR.

No slip boundary condition is applied at the walls of the cylinder.
The Chebyshev spectral collocation method is used to solve the flow prob-
lem. Collocation points from 22 to 50 are required in the radial direction,
while 70–160 collocation points are needed in the axial direction for the
range of magnetic fields considered.

Once the flow solution is known, the time-dependent mass diffu-
sion problem is determined. The dimensionless governing equation for the
diffusion problem is

∂c

∂t
+Pem(ν ·∇)c=∇2c, (3a)

where Pem = UR/D0 is the mass Péclet number which is a characteristic
ratio of convective effects to diffusive effects in the liquid. In Eq. (3a), c is
normalized by the initial concentration C0 and t is scaled by the diffusion
time scale R2/D0. The boundary conditions are that no mass transport is
allowed across any boundary. The initial condition is that a thin layer of
radioactive tracer occupies the bottom of the cylinder at the beginning of
the measurements and is represented by

c(r, z, t =0)= exp(−γ z2), (3b)

where γ =2.5.
The spectral collocation method is used for the spatial discretization

while the finite difference method is used in temporal discretization in
solving the diffusion problem. The fluid flow is symmetric about the plane
at θ = 0 and θ =π , and thus the concentration c is symmetric about this
plane. In Chebyshev polynomials, c is defined as



3-D Simulations of Diffusivity Measurements in Liquids 1767

c(r, θ, z, t)=
Nθ∑

M=0

cos(Mθ)CM(r, z, t), (3c)

where cosine is an even function. Then, the time traces of c(r, θ, z, t) are
straight lines fitted with the form,

ln [c1(t)− c2(t)]= constant−
(

π2D

Z2

)
t (3d)

known as the Codastefano [6] or Harned [7] technique in order to obtain
the output D.

3. RESULTS AND DISCUSSION

Liquid indium with the following properties, µ = 5.18 × 10−4 kg
· m−1· s−1, ρ = 6.64 × 103 kg · m−3, β = 1.02 × 10−4 K−1, and σ = 3.02 ×
106 S · m−1 [4], is used as a model fluid. A self-diffusivity value of D0 =
1.48 × 10−5 cm2· s−1 was used as input. Five different magnetic field
strengths from moderate to very strong (i.e., Ha = 25–600) are considered
for the uniform incoming heat flux along the sidewall during the measure-
ments.

With a uniform heat flux along the sidewall of the cylinder, the con-
tours of the velocities are presented in Figs. 1–3 for B =3.49 T (Ha=400).
The magnitude of νr varies as cos θ in the azimuthal direction, and the
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Fig. 1. Contours of radial velocity νr in θ =0 plane for Ha =400.
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Fig. 2. Contours of azimuthal velocity νθ in θ =0 plane for Ha =400.
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Fig. 3. Contours of axial velocity νz in θ =0 plane for Ha =400.

contours of νr can be seen in Fig. 1 for the θ = 0 plane. They have sym-
metry at the mid-plane z=10. The contours range from −9.78 to 9.78. For
a smaller magnetic field from B = 3.49 T, the νr contours are horizontal
toward the centerline (r = 0) while with a higher magnetic field, the con-
tours tend to be compressed toward the sidewall (r = 1). The νr contours
range in the order of −10 and 10 for all five cases. Ma and Walker [5] pre-
sented the asymptotic solutions with a non-axisymmetric temperature in a
Czochralski crystal growth process with an axial magnetic field. Their νr

contours for Ha = 200 are similar to those in Fig. 1.
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The magnitude of νθ varies as sin θ in the azimuthal direction, and
the νθ contours at the θ = 0 plane are presented for Ha = 400 in Fig. 2.
They are positive near the top wall and negative near the bottom wall.
The νθ contours range between −66.5 and 66.5 and have symmetry at
the midplane (z = 10). The contours are horizontal toward the center-
line for lower Ha with smaller magnitudes. For stronger magnetic fields
(higher Ha), the contours are compressed toward the sidewall (r =1) with
increasing magnitude with an increase in Ha. These contours are similar
in pattern to those presented by Ma and Walker [5] for νθ with Ha = 200
from the asymptotic solution.

The magnitude of νz varies as cos θ in the azimuthal direction, and
the νz contours at the θ = 0 plane are presented in Fig. 3 for Ha = 400.
The contours are positive near the sidewall (r = 1), and a negative weak
circulation appears near the centerline for Ha �400. They are symmetric
at the midplane (z=10) and range from −33 to 515. The magnitude of νz

contours increases with increasing Ha, and the contours are compressed
toward r =1. Ma and Walker [6] presented νz contours of this nature from
an asymptotic solution for Ha =200.

The allowable temperature nonuniformities �Tθ are very small for
any Ha in this setup. The absolute maximum radial velocities |νr max| are
in the range of 10−5–10−6 cm · s−1 and are the smallest among the three
velocity components for all cases. The absolute maximum azimuthal veloc-
ities |νθ max| are comparable to the |νr max| for moderate Ha, and they are
an order of magnitude higher than |νr max| for higher Ha. The absolute
maximum axial velocities |νz max| are in the range of 10−4–10−5 cm · s−1

and the largest component of the velocity vector. The uniform axial mag-
netic field suppresses the radial velocities but since they are parallel to the
axial velocities, there is no significant effect in reducing the axial veloci-
ties. All the velocities increase with increasing �Tθ resulting in higher out-
put D. The velocities vary as B−2 with the applied uniform axial magnetic
field.

A summary of results for our 3-D model can be seen in Table I.
In numerical simulations, the results with Nθ = 2 and Nθ = 4 agree up to
12 significant figures and thus, neglecting the higher modes in Chebyshev
polynomials of c(r, θ, z, t) is justifiable. A range of magnetic fields from a
moderate field of B =0.218 T (Ha=25) to a very strong field of B =5.24 T
(Ha = 600) is considered for this 3-D model. The maximum absolute val-
ues of the three components of the velocity vector are presented for each
case along with the output D. For the same magnetic field, the velocities
depend directly on the allowable temperature non-uniformity �Tθ in the
liquid; however, the output D is not proportional to the temperature and
flow results. For example, an increase of �Tθ by a factor of two does not
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Table I. Summary of Results

�Tθ (K) |νr max| (cm · s−1) |νθ max|(cm · s−1) |νz max| (cm · s−1) D×105 (cm2 · s−1)

B =0.218 T; Ha =25
0.000853 1.04×10−5 1.04×10−5 5.90×10−5 1.51
0.00149 1.81×10−5 1.81×10−5 1.03×10−4 1.58
0.00213 2.59×10−5 2.59×10−5 1.47×10−4 1.69
0.00639 7.76×10−5 7.76×10−5 4.42×10−4 3.31

B =0.873 T; Ha =100
0.00137 3.83×10−6 5.20×10−6 5.40×10−5 1.51
0.00273 7.64×10−6 1.04×10−5 1.08×10−4 1.58
0.00410 1.15×10−5 1.56×10−5 1.62×10−4 1.71
0.0137 3.83×10−5 5.20×10−5 5.40×10−4 3.90

B =1.75 T; Ha =200
0.00412 2.86×10−6 8.93×10−6 7.85×10−5 1.53
0.00824 5.71×10−6 1.79×10−5 1.57×10−4 1.67
0.0165 1.14×10−5 3.58×10−5 3.14×10−4 2.23

B =3.49 T; Ha =400
0.00819 1.45×10−6 9.85×10−6 7.62×10−5 1.51
0.0164 2.90×10−6 1.97×10−5 1.52×10−4 1.60
0.0328 5.80×10−6 3.40×10−5 3.04×10−4 1.96

B =5.24 T; Ha =600
0.0123 1.05×10−6 1.04×10−5 7.53×10−5 1.50
0.0246 2.10×10−6 2.07×10−5 1.50×10−4 1.57
0.0492 4.20×10−6 4.16×10−5 3.01×10−4 1.83

result in a factor of two increase in the output D with the same magnetic
field, but the components of the velocity vector are a factor of two larger.

Figure 4 presents the dependence of output D on the effective mass
Péclet number (effective Pem), which is Pem · |νmax |, for different magnetic
field strengths. The effective Pem represents the convective mass transport
to mass diffusion, and five different magnetic fields are considered. For the
Ha=25 case, the output D is the most sensitive to the buoyant convection
produced by the applied uniform heat flux. As the applied magnetic field
is increased, the sensitivity of output D on the convective contamination
decreases as one would expect. For example, at an effective Pem ∼ 3, the
output D is 1.3 times larger for Ha =25 than that for Ha =600 having a
comparable magnitude of convective contamination in the measurements.
Thus, a stronger magnetic field can tolerate a larger allowable temperature
nonuniformity �Tθ .
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Fig. 4. Output D versus effective mass Péclet number (effective Pem) for different
magnetic field strengths.

From the 3-D numerical simulations by Alexander et al. [3] on liquid
indium, for a 3 mm diameter capillary with an allowable temperature non-
uniformity �Tθ = 0.01 K, the output D, from considering the entire cross
section, is 1.54 × 10−5 cm2· s−1. Our results from Table I with a magnetic
field of B =5.24 T (Ha =600) gives an output D =1.50×10−5 cm2· s−1 for
an allowable �Tθ = 0.0123 K. Therefore, the application of a strong mag-
netic field does not have a significant benefit on suppressing the convection
in the liquid during the measurements.

4. CONCLUSIONS

A first 3-D numerical model representing a self-diffusion experiment
for liquids with an applied magnetic field is presented in this paper.
The applied uniform heat flux drives the buoyant convection during the
diffusivity measurements, and five different magnetic field strengths are
considered. The components of the velocity vector are symmetric at the
mid-plane (z = 10). Each component of the velocity vector increases with
increasing applied heat flux (i.e., allowable temperature nonuniformity �Tθ

in the liquid) and decreases with increasing applied uniform magnetic field.
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The magnitudes of the radial and azimuthal velocities are comparable
while the axial velocities are significantly larger than the other two com-
ponents.

While the components of the velocity vector are directly proportional
to the allowable temperature nonuniformity �Tθ in any case, the out-
put D does not have a linear relationship with the applied heat flux
or �Tθ . The output D depends on both the �Tθ and the magnitude
of the applied magnetic field, and in order to achieve the desired 5%
allowable convective contamination in the liquid (i.e., the output D must
be 1.55 × 10−5 cm2· s−1), an optimum heat flux or �Tθ can be estimated
from the results provided in Table I for different magnetic field strengths.
Although a strong magnetic field can tolerate a larger �Tθ , the applied
axial magnetic field cannot suppress the axial velocities significantly in this
setup. The allowable �Tθ are extremely small, even for a very strong mag-
netic field of 5.24 T (Ha =600) case.

In conclusion, there is no notable improvement in applying a uni-
form, axial magnetic field to the 3-D model created by Alexander et al.
[3] although liquid indium is electrically conducting. However, from our
previous work on a 2-D axisymmetric model with an applied magnetic
field and different forms of heat fluxes [1,2], it was recognized that a
particular form of heat transfer is important in bringing out the benefit
of a magnetic field. Although the application of a magnetic field does not
show significant benefit to the current 3-D model with a uniform heat flux
along the sidewall, we believe that it would be beneficial in controlling the
buoyant convection in the 3-D model with an appropriate form of heat
transfer.
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